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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECtiICAL MEMORAI@JM 1319

TORSION AND BENDING OF PRISMNI’lC”RODSOF

HOLLOW RECTANGULAR SECTION*

By B. L. Abramyan

In the present
torsion and bending

paper a solution is given for the problem of the
of prismatic rods of hollow rectangular sections.

As in the former paper (reference 1), the method given by
N. Kh. Arutyunyan (reference 2) of introducing auxiliary functions was
employed in the solution of this problem. This method permitted reduc-
ing the solution of the partial differential equations of the problem
to the solution of linear differential equations of the second order
with constant coefficients and reducing the determination of the con-
stants of integration to the solution of an infinite completely regular
system of linear equations.

The obtained formulas determine the stiffness in torsion and bend-
ing as a function of the geometric parameters of the section.

At the same time, there are indicated the limits of applicability
of the semiempiricalformula of Bredt (reference 3) for the determina-
tion of the stiffness in torsion of hollow thin-walled rods.

1. TORSION OF A PRISMATIC ROD OF HOLLOW RECTANGULAR SECTION

1. Statement of the problem. - The determination of the stress
function U(x,y) for the torsion of a rod of a doubly connected cross
section reduces, as is known, to the integration of Poissonts equation

a%V2U = — a% -2

ax2+&Z=
(1.1)

when the function U(x,y) becomes zero at the outer contour and assumes
a constant value U. on the inner contour (fig. 1). From the symmetry

it is sufficient to find the function U(X,Y) ody for the part of the
section ODEFBC. In order that the solution extend to the entire reaion
of the cross section, it is necessary that on the lines DE and BC the
normal derivatives of the function U(x,y) be equal to zero.

*“Kruchenie i izgib prismaticheskiti sterzhnei s polym pryamougollnym
secheniem.” ,PrikladnayaMatematika i Mekhanika, vol. 14, no. 3, 1950,
PP ●
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2 NACA TM 1319

It is assumed that in the region OABC the function U(x,y)
assumes the value Ul(xjY) and in the region ODEG,the value u2(x,y).

It is ideal to obtain the function Ui(xJy] in the form

U~(X,y) = Yi(X)y) +@i(x,y) (i = 1)2) (1.2)

where the functions @i(xjy) (i = 1,2) exists only in the region OATG,

Yl(x,y) exists in the region OABC, and Y2 exists in the region ODEG.

For the auxiliary functions Wi(x)y) and @i(xJy)J the following
equations sre obtained:

Vz”yi= .2 V%i . 0 (i = 1,2) (1.3)

The following conditions must be satisfied:

()ay~
Yl(x,o) = ~ _ = qoYY) + @l(%Y) = o Yl(x,dl) ‘Uo (104)

x–a

()M2
Y2(o,y) = ~ _b = Y2(%O) +.’3’2(@) = o Y2(d2,y) =Uo (1*5)

Y–

The boundary conditions for the determination of the functions
Y1(x,Y) md Yz(xjy) are nonhomogeneous; however, following

G. A. Grinberg (reference 4), set

m a

Y1(x,y) = z fk(x) sin&W

z

knx
dl Y2(x,y) = vk(y) sin ~

2

k=l k= 1
(1.6)

For @l(x,y) and @2(xJY) the following conditions are then

obtained:

(1.7)

w’”
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()a~
@2(x@1)= *2(0,Y) = ~ ~_dl .=0m.

,

I
I

1 - }-” ~~~

(1.8)!.
e/

;.
@2(d2,y) =

z

‘~ .,UOfk(d2) sin=

k=l

It is ideal to obtain the functions @l(x,y) and @2(x,y) in the
fOrm

m

z w

q(x,y) =
kny

~k(x) sin—. @2(x,y) =

z

kfix
dl wk(y) sin~

k=l k=l
(1.9)

Equations (1.3) to (1.9) completely determine the function U(x)y)
in the region ODEFBC.

2. Solution of the equations of the problem. - Making use of equa-
tions (1.3) to (1.9), the following equations are obtained:

fk(x) = Ak sh
kfixzx+Bkch~

dl - (-l)k~
1

+ [1 - ,-1)~ -

(2.1)

‘k(y) = Mk Sh y- (-l)k~+ [l- (-J-‘+ NkChd
d2

(2.2)

z(_l)k? m ~p(dl)

[

dl
,.> . knx

- p shr -

1

k sin ~,
n

(Pdl/d2)2’+k2 d2’
p=l

(2.3)
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-!-’’’=9’Wk(y) =% sh~+Fk ch~+ (-l)k~
2

03

(-l)k-?E fp(dz) [
d2 kny

J

.=
If

(pd2/dl)2+k2 ~p ‘hd2 - k “ndl
p= 1

(2.4)

Then fp(d2) and vp(dl) have the values

(2.5)

3. Determination of the.constants of integration. - For the func-
tions fk(x)j vk(y)j qk(x]j and wk(y)j the boundary conditions from

equations (1.4), (1.5), (1.7), and (1.8) have the form

fk’(a) = ‘k(o) +~k(o) = O Qk(d2) ‘Qk’(d2) = O
(k=l,2, . . .)

Vk’(b) = Vk(0) + Wk(o) = O wk(dl) = wk’(dl) = O

(3.1}

With the aid of these conditions the equations for the determina-
tion of the constants of integration are obtained from equations (2.L)
to (2.4).

With the di.miIM,ti.On Of .AkjMkJ ~,

obtained equations, a set of two infinite
(reference5) is obtained. The following

the

~k Sh k’d2
Bk = Skdld2 k —dl Nk =

systems of linear equations
notations are introduced:

This set of two infinite systems of equations is then reduced to
form

&



NACA TM 1319 5

p=l p=l

where

2k d1d2
Ckp. fi.—

d22p2 -I-d12k2

{

2u~
rk=+ + 4 1 - (-l)k d2

ti2d~2 X3 k q
L

sh

(3.3)

J@chp n(b-dl)
sch d2 d2

(3.5)

Systems (3.3) may be written in the form

m

q. E AVpzp + % (V= 1,2, . . .) (3.6)

p =1

where it is necessary to set

Z2n-~ = Sk ‘2n = Rk A2n,ti = O ‘2n,2m-l = Ckp
(3,7)

B2n-1 = ~k B2n = Tk ‘2n-l)2m-l = o ‘2n-l,2m = akp

A few cases will.be considered.

1. The infinite system (3.6) is completely regular for b>d2 and
a>dl since from equations (3.4), (3.5), and (3.7)
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m

x‘2n,p

p.1

w m

E k ‘2

z

1=. .—
c~< fidl (pd2/d1)2 + kz

p=l p.1

1 ( knoll dz

)

1=— —. —
2

cth ~z ~—
knoll 2

(3.8)

co m

L ‘2n-l,p =
E

k ‘1
%~;~

z
(pdl/d:)2 + k2

p=l p.1 p=l

1 ( )kfid2 dl < 1
.— —.. —= —

2
cth dl

kndz 2

where the inequalities were used

pfidz pfia~h pn(a-dz) pnd2

()

pfld2 1
sh dl .—sch ~ <_

dl
= sh dl exp

dl 2

Hence, for any v

2. The system (3.6) is
a>dz, b = dl and a = d2,

is present).

A

m

x 1
Avp< ~

p.1

regular for the
b>dl (where a

o

(3.9)

(3.10)

(3.11)

(3.12)

~articular cases where
rectangular hollow section
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I In this case

I

L ‘2n-l,p =
L

am <

p= 1 p=l
rQ/.

.

(pdl/d:)2 + k2
<1 (3.14)

where the inequalities (3.11) were used

(3.15)

According to equations (3.13) and (3’.14) for any v

3. When a = b and d2 = dl = d, a hollow square section

a single infinite system of linear equations which is entirely
for ~/d & p > 1, where piss
the systems (3.3). This results

where

2k
> b@ =.; sh pfisch

finite number,
in

% (k=l,2,

is obtained in

● . ●)

Q@ ~h Pfi(a-d) 1
d d p2 + k2

(3.16)

(fig. 2),

regular
place of

(3.17)

(3.18)
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m

E 2kl+e

z

-2fl(11-1)- 1 <1 + e-2fi(P-lJ
bkp< 7 2 p2 + k2 2

p=l p=l .

where the ineq~lities (3.11) were used and

h an example,
(3.20) is obtained

The free term

(3.19)

(3.20)

(3.21)

the case where a/d%p= 3/2 is considered. From

ra

E
p=l

% ‘f

e = 0.4784

the system (3.

0.5216

(3.22)

17) satisfies the ineqwlity

~k!< 0.20264:- 0.06198 (3.23]

The VSJX5S of the -CIm Fk with an excess is denoted by Fk+

and the values with a defect by Fk-.

Using the theory of regular and completely regular systems (refer-
ence 5) and applying limiting values yields the folJowing estimates for
Fk :

uo- Uo+
Fl- = 0.27547— - 0.09629~ Fl< 0.27588— - 0.09641 = Fl+d2 d2

uo- Uo+

‘2-1A= o“18234~ -
o.lllo7s F2<o.18300— - 0.11128 = F2+

d2

(3.24)
uo- Uo+

F3- = 0.14762— - 0.09749G F3S 0.14845 — - 0.09775 = F3+ .
d2 d2

‘o-
Uo+

0.13440— - 0.09196s Fk-~ Fks Fk+~ 0.13739 — - 0.09288d2 d2

(k=4,5, . . .)
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where UO+ is

with a defect.

the value of UO with an excess and Uo- ,is the value

4. Determination of the constant Uo. - For

is made of the theorem on the circulation of the
torsion (reference 6)

n

/
T~ds =

u
co

where co is the inner contour FHMLF

the area enclosed by this contour, G
angle of torsion per unit length, and

tangential stress at any point of the
the tangent to the contour.

Substituting in (4.1) the value

Ts =
(

au h
~z-

and making a certain transformation,
form

2(HQO

-.

determining Uo, use

tangential stress in

(4.1)

of the section (fig. 1], S20 is

is the shear modulus, z is the
Ts is the projection of the

contour Co on the direction of

(4.2)

relation (4.1) is reduced to the

~(~Jy=d>+~@$x=d>=2 (a-d2)(b-dl) “*3)
d2 dl

Use of the obtained values of fk(x) and vk(Y) yields, from
relations (1.2), (1.6), and (4.3),

IJo.

d22
-
It

d1d2

w) +dl(b-dl)
{

2ab - adl - bd2 +

@ Ch

kn(b-dl)

d2 d2 + (4.4)

k=l
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where Rk and Sk are the constants of integration determined from

the SyStem (3.3); and ~k and Tk have the values (3.4) and (3.5).

If the Vslues of the coefficients Rk and Sk tith excess and with

defect are substituted in (4.4) and this equation solved for Uo, the
values of UO with excess and defect are obtained.

5. Determination of the stress function. - According to (1.2),
(1.6), (1.9),and the obtained values of the functions ‘k(x)> ‘k(y)J
~(x), and wk(Y)y the stress function has the form:

a

z pfidl
Ul(x,y) =

pfix
vp(dl) sin ~ csch ~ sh~v + y(dl-y) +

d2

p=l

k =-1

2 dl——
n d2

(-lp sh
kn(x-d2)

Ul(x,y) = Uoz + y(dl-y) +
dl

for OSX< d2

Vp(dl) ll(-l)p
(pdl/d2)2 + k2

(5.1)

(5.2)
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(5.3)

p .1

m

2 d2

E

(-l)k sh
kfi(y-dl)

——
n dl d2

k=l

where fp(d2)

fp(d2) =

and vp(dl)

{

(-~)P+l 2U0

P 7

for O< y< dl

fp(d2)(-l]p P

(pd2/dl)2 +k2

(5.4)

have the values

4dlz

+ p2n3 [ 11+(-l)P+l-
pnd2 pfi(a-d2)

~dld2sh~ ‘ch~ch dl
}

(5.5)
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~p(dl)
L

By the substitution of the obtained values of the stress function
U(x,y) in the general formulas, the stress and stiffness in torsion are
obtained.

As an example the torsional stiffness and stress of a rod with a
hollow square section (fig. 2) will be determined.

6. Determination of the torsional stiffness. - The substitution
in equations (5.1) to (5.6) of b = a and dl = d2 = d and the use

of the formula for the stiffness of a section

dd

[
C = 8G (a-d)2 U. +

JJ
U(x,y) tidy + 2

00

(d.yfu(x)yl:j)
●

(6.2)

k=l,3, . . .

$ ~ iw+shkfisch*sh*-
k=l,3, . . .

1~“a r-h &@!.)‘sch—
d

= p(-~)P+l fp(d)
— -

d p2 + k2 d2
p=l

(continued on the following page)
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1s,- +
d

(6.2)

where Uo i“.determined from the equation

m

‘O a+l d

E

‘k s, k~ s~, ‘fia

z

&&@&& m ~—=. ——
d2 d fia-d k2 T d a-d

k=l ,=1 (6.3)

and fp(d) has the value *

f (d) (-~)pd2
f

2 Uopflach -----
Fp sh pfisch~=

P P d fid2 p2fi3

the

ak

)?,-

Coefficientswith a defect Fk- will correspond with the lower stiff-

L

(6.4J

unknown constants Fk being determinedly inequalities (3.24) and

having the value (3.19).

Substitution of the obtained values of the coefficients Fk+ and

in (6.2) yields the upper and lower limits of stiffness. The

ness limit C- Canalthe coefficientswith an excess Fk+ will corre-
spond with the upper stiffness limit C+.

l“”. .. -. . — —
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a/d Co*

,1.5 8.0
2.0 27.0
2.5 64.0
3.0 125.0
3.5 216.0
4.0 343.0
5.0 729.0

10.O 6859.0
20.0 159319.0

TABLE I

co+

11.052
32.952
73.780

139.518
236.164
369.716
771.542
7035.066
60034.051

co-

11.051
32.949
73.775

139.509
236.150
369.697
771.509
7034.902

60033.323Y
A 5

38.4 0.009
22.0 .008
15.3 .008
11.6 .007
9.3 .007
7.8 .005
5.8 .004
2.6 .002
1.2 .001

In table 1 are given the relative values of the stiffness computed
by formula (6.2]:

1
co+ = c+/Gd4 co- = c-/Gd4

and the maximum relative
.

in percent for different

error

~ = (~+ - c+)/c-

ratios a~d.

For comparison there are also given-in table 1 the values ~f the
relative stiffness computed by the semi-empiricalformula of Bredt
(reference3).

CO* .5=(2 ;-,.3 / (6.5)

and the different A = (C+ - C*)/C+ in percent.

From table 1 it is seen that the semi-empirical formula of Bred~
(6.5) gives sufficiently close results only for thin-walled rods for
which a/d > 5. For thick-walled rods, however, for which a/d< 5
the Bredt formula is not applicable; for a/d = 4 it gives an error
of 8 percent which rapidly increases.

7. Determination of the stresses. - With the use of expressions
(5.1) to (5.2) for the stress function, the stresses are readily
obtained by the usual formulas of the theory of elasticity.

Leaving out the computations gives the following expressions for
the’stresses at the points (a,O) and (ajd) for the rod with a hol-
low square section represented in figure 2:
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‘-Xz(a, O) .= {:+l+fi~(-l]kF,sch~shk]tid(7.1)

=

Yz(a,O) = Yz(a,d] = O

After the substitution of the coefficients F,+

upper and lower limits of the stresses Xz(a,O) and

X + will correspond with thethe upper stress limit ~

an eXcess ??k+(k=l,2, . . .), are determined.

(7.3)

and l?k-,the

Xz(a,d), where

coefficientswith

In table 2 are given the computed values of the stresses Xz(a,O)

and Xz(a,d). In the first column of each stress are given the values

with an excess snd in the second column, with a defect.

1.5
2.0
2.5
3.0
3.5
4.0
5.0
10.0
20.0

TABLE 2

Xz(a,d)
@d

0.3149
0.7325
1.2085
1.7050
2.2068
2.7092
3.7131
8.7204
18.7236

0.3143
0.7322
1.2082
1.7048
2.2066
2.7089
3.7129
8.7201
18.7234

Xz(a,O)
Wd

2.0212
2.6326
3.1798
3.6974
4.2048
4.7088
5.7131
10.7204
20.7236

2.0212
2.6324
3.1797
3.6972
4.2046
4.7085
5.7129
10.7201
20.7234

w

xz*max
~d

2*O
2.25
2.6667
3.125
3.6
4.0833
5.0625
10.0278
20 ● 0131

In the same table the values of the maxiqmm stresses XZ*,

computed by the formula of Bredt, sre given for comparison.

x
z~’=-md

(7.4)

11



16 NACA TM 1319

From table 2 it is seen that in
stresses, the approximate formula of
thin-walled hollow rods.

3.5

a/d

the determination of themaxhnun
Bredt may be applied only for very

When a/d = 20, the Bredt formula (7.4) gives an error of
percent.

With decrease in the ratio a/d this difference increases; for
= 10 it is equal to 7 percent, for a/d = 5 it is equal to

13 percent, and for a/d = 3 it is equal ~o 18 percent, etc.

II. BENDING OF A PRISMATIC ROD OF HOLLOW RECTANGULAR SECTION

8. Statement of the problem. - The stress function F(x,y) in
bending, as is known, satisfies the equation

b2F
V2F =— + ~2F

axz
Q = “*- (Y-YO) - & f’(Y)

within the region of the section and the condition

[E=& ‘2-2xxo- .1,f(y) *

(8.1)

(8.2)

on the contour of the section where P is the bending force applied to
the free end of the rod at the center of gravity of the section, v is
the Poisson coefficient, ~, y. are the coordinates of the center of

gravity of the section, I is the axial moment of inertia of the sec-
tion about the y axis; the arbitrary function f(y) is to be deter-
mined from the conditions at the contour.

On account of the symmetry (fig. 3) it is sufficient to find the
function F(x,y) oriiyfor the part ODEFBC of the section.

In order to extend the solution over the entire region of the
cross section, it is required, on the basis of the membrane analogy
(reference7), that the function F(X)Y) becomes zero on the vertical
axis of symmetry and the derivative aF/ax becomes zero along the
horizontal axis of symmetry.

By condition (8.2) on the section contour, the function F(x,y)
is determined with an accuracy up to a constant term. For the cross
section which is a doubly connected region, the number of constsnt
terms is”equal to two; and for their determination use is made of the
theorem on the circulation of the tangential stresses in bending
(reference6).
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It is aBsumed that in the region OABC the function F(x,y)
assumes the value ,Fl(x,y) and in the region ODEG the value F2(x,y).

It is ideal to obtain the function Fi(x)y) (i = 1,2) in the form

Fi(x,y) ‘Yi(X,y) +4?i(XJy) (i=l,2) (8.3]

where the functions @i(xjy) (i = 1,2). exist only,in,the region OAFG,

the functions yl(x,Y) exist in the region OABC, and Y2(x,y) in the
region ODEG.

For the auxiliary functions Yi(x,y) and @i(x)y) (i = 1,2))

setting f(y) = 0, the following equations are obtained:

V 2Yi =K(y-b) V2~i = O
( )

(i=l,2) K ==~~ (8.4)

where the following conditionsmust be satisfied:

()aY~
Wl(x,o) = —

bX X=a
=Yl(o,y) +*l(O,Y} = o Yl(x,dl) = Cl

(8.5)

Y2(x,b) =Y2(o,y) = Y2(X,01 +*2(X,0) = o

Yz(dzjy)

By the method described

(8.6)
= ~ (2a-d2)(b-y)d2

in the first section set

m m

w~(x,y) = z kmyfk(x) sin— Y2(x,y) =
E

knx
dl vk(y) ‘in d2

k=l k=l (8.7)

Then
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Z * p(2a-d2)(b-y)d2@2(~2)Y) = fk(d2) sin ~
-E

(8.9)
1

k=l

It is ideal to obtain the functions @l(xJY) and @2(X,Y) in the
form

w w

@l(x,y) = E k~
@k(x) sin— *2(X,Y) =

E

ktix
‘k(y) ‘in—

‘1 d2

k=l k=l (8.10]

Equations (8.4) to (8.10] determine F(x,y) in the r&gion ODEFBC.

The constant

circulation of the
of the section:

a

J’
d2

c1 is determined with the aid of the theorem on the

tangential stresses in bending for the inner contour

9. Determination of the bending stresses. - The solution of the
equations of thi~ problem is analogous to the solution of the eqwtions
of the problem of the torsion of a rod.

With the omission of the computations the values of the obtained
stresses are:

for the region OAFG

Pv
‘z(xJY1 =% (2a-x)x +——611+V (3y2-d12) -;* (2y-dl)b +

k=l

(continued on fol.lowing page)



2c~

r

(-l)k ch
kfi(x-d2) kW’

~ dl Cos ~ +

k=l

w

2

z

k~(x-d21 ~os=
k(-l)k sh

2’

- V (dl) P(-l)p

q dl dl (pdl/d2)2 +k2
k=l p=l

-L 1.

k=l

m

2
q

z

‘k(-l)k ch

p=l

kfi(x-d2)

dl

w

knysin ~

z
k=l

Vp(dl) P(-l)p

(pdl/d2)2+ k2 +

19

for the region GFBC

% P
x~(xYY) =% (2a-x)x + ~ + — ~ (3y2-d12) -

611+V

(9.1)
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for the region ATED

m

XZ(XYY) =% (2a-x)x -+ z{Id&+ (-1)
[

‘~ ~ (2a-d2) +
2
k=l

2P v
~ (1+ (-1) 1} &&!!kdsi—— k+l~~sch ~ d2

I 1 + V (km)z

v
l+V

(-lp

(dZ-x)x

[

‘Zb p 2a-d2) +
1(

——
lt

a

Yz(x,y) = - x
dz

z{

kDk+

k=l

2P v 11—~ (1+(-l)k+l)csch~ shwcos k&-
T l+v(h)z

-& (Zs,-dz) (b-y) - ~ & (b-y) (d2-2x) (9.3)

In these relations the constants of integration 1% and ~ are

determined from the infinite completely regular system of linear
equations.

Translated by S. Reiss
National Advisory Committee
for Aeronautics



NACA TM 1319 21

1.

2.

3.

4.

5.

6.

7.

REFERENCES

Abramyan, B. L.: PMMj vol. XIII, no. 5, 1949.

Arutyunyan, No Kh.: PMMj vol. XIII, no. 1, 1949.

Dinnik, A. N.: Torsion. ONTI. M. - L. 1938.

Grinberg, G. A.: Izvestia. AN SS~, seri.afizicheskaya, vol. X,
no. 2.

Kantorovich, L. V., sad &ylov, V. I.: Approximate
higher analysis. ONTI. M. 1941.

Leibenzon, L. S.: Course in theory of elasticity.
M. - L. 1947.

Timoshenko, S. P.: Theory of elasticity. ONTI. M.

methods of

Gostekhizdat,

- L. 1934.

I,.

—.. . . . . . ---



— —

#

.

al,

L

Y

.-0-— .

Yz

1E
.-0 ---

z M

F. ..-. —

Xz

NACA TM 1319

Figure 1.

x



NACA TM 1319

.

Y

23

Yz

----

-----

t

L-I?B
-1

0 G c

IMgure 2.

+-
x



24

.

----

~----
z

(2

----- -.
c

------ --<

P x

o AD

II

--b

F

--
B

K

E

I

Idl-
0—— 2b

---
L

--

P

NACA TM 1319

TY

X.

L

T Yz
.1.
dz

r

NACA-Lcu@6y - 11-S0-61 -1000

. . . —.— .. . -—-----~ .,>.<., ..~,.... .:.- ----- - -... —.,..-.,.,.. .. . “!. +...,,. .. . . . ,.



—

....

J

f

.. . .

‘.,*, ,

-.


